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BODY POSTURE TRACKING

RELATED APPLICATION(S)

[0001] This application claims priority under 35 U.S.C.
§119 or 365 to European Application No. 13305703.4, filed
May 29, 2013.

[0002] The entire teachings of the above application(s) are
incorporated herein by reference.

FIELD OF THE INVENTION

[0003] The invention relates to the field of computer pro-
grams and systems, and more specifically to computer-imple-
mented methods, programs, data storage media and systems
for performing body posture tracking.

BACKGROUND

[0004] Body posture tracking is related to body motion
tracking. Systems offering such tracking capacities allow the
recognition of a real body’s posture or motion (i.e. a time-
series of postures). The idea is to describe such posture or
motion in a computerized form, for example so as to make use
of'such computerized data. This may be useful in many appli-
cations, including non-exhaustively virtual reality applica-
tions, video games, and surgical assistance.

[0005] Body posture tracking may be performed based on
different technologies. Depth sensors may be used to provide
depth measurements (e.g. a depth map) of a body evolving in
a location covered by the sensors. Another technology
involves inertial sensors that are attached to body parts to
provide their 3D positions. Stereo vision cameras can also
provide 3D positions. Besides, data fusion has also been used
to combine different data in order to predict a posture with
relatively high accuracy. So far, several data fusion
approaches have been developed.

[0006] Data fusion involving depth sensors is a very active
field, since current depth sensors, when used alone, fail at
describing a three dimensional scene with high fidelity. The
two major drawbacks of depth sensors are their limitations in
the field of view, resulting in blind spots in the 3D scene, and
the lack of precision of the depth map with low discriminative
power in close by depths and high sensor noise around object
edges.

[0007] Data fusion is used in this context to cope with these
problems, but currently, accuracy is the subject that has
attracted most attention, both in the industry and the academic
context. In the industry, the most notable usage of data fusion
for improving the accuracy of the depth sensors can be found
at “3Gear Systems”, where the fusion of two depth sensors
and machine learning are associated in order to track accu-
rately the movements of the fingers for a haptic interface. This
application is not, to this day, realizable with only one depth
sensor.

[0008] Usages of data fusion on depth sensors are also
largely discussed in academic research. The most notable
approaches include:

[0009] The fusion ofa depth sensor, a stereo vision cam-
era and visual cues extracted in luminance images
(“Sensor Fusion for 3D Human Body Tracking with an
Articulated 3D Body Model”, Knoop et al.);

[0010] The fusion of a depth sensor and a stereo vision
system, either infrared based or natural light based (“Fu-
sion of Time-of-Flight Depth and Stereo for High Accu-
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racy Depth Maps”, Zhu et al., and “Improving the Kinect
by Cross-Modal Stereo”, Chiu et al.); and

[0011] The fusion of 4 depth sensors (“Markerless
Motion Capture using multiple Color-Depth Sensors”,
Berger et al.).

[0012] Data fusion is also used to improve the accuracy of
inertial sensors and circumvent their limitations. The most
notable industrial systems featuring sensor fusion on inertial
sensors include:

[0013] The Nintendo Wii Gaming Console (registered
trademark) in which inertial sensors information is fused
with Infrared sensors information; and

[0014] The Playstation 3 Gaming console system
dubbed Playstation (registered trademarks) move fea-
turing a RGB camera that tracks the movements of a
glowing ball on a “wand” the user keeps in hand, the
wand is also equipped with inertial sensors, the console
system then performs the fusion.

[0015] Data fusion between RGB images and inertial sen-
sor information has also been debated in the academia, for
example in the following papers:

[0016] “Advanced tracking through efficient image pro-
cessing and visual-inertial sensor fusion”, Bleser et al.;
and

[0017] “Visual-Inertial Sensor Fusion: Localization,
Mapping and Sensor-to-Sensor Self-Calibration”, Kelly
et al.

[0018] In this context, there still is a need to improve the

tracking of'a body posture.

SUMMARY OF THE INVENTION

[0019] According to one aspect, it is therefore provided a
computer-implemented method (hereafter referred to as
“tracking method”) for performing body posture tracking.
The tracking method comprises the step of collecting depth
measurements of a body with at least one depth sensor. The
tracking method also comprises collecting inertial measure-
ments with at least one inertial sensor attached to the body.
And the tracking method also comprises determining at least
one posture of the body as a function of the depth measure-
ments and the inertial measurements.

[0020] The tracking method may comprise one or more of
the following:

[0021] the depth measurements and the inertial measure-
ments constitute time-series, and determining a posture
is repeated at each time the method collects depth mea-
surements and/or inertial measurements, the method
thereby tracking body motion;

[0022] determining a posture at each current time is per-
formed based on predetermined data, on the depth mea-
surements and/or inertial measurements collected at the
current time, and on data determined at the previous
time;

[0023] determining the posture comprises determining
and maximizing a probability distribution that assigns
probabilities to postures of the body as a function of the
depth measurements and the inertial measurements;

[0024] at each current time, the probability distribution
that assigns probabilities to postures of the body as a
function of the depth measurements and the inertial
measurements is recurrently obtained by multiplying
the probability distribution that assigns probabilities to
postures of the body as a function of the depth measure-
ments and the inertial measurements determined at the
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previous time, by a probability distribution that assigns
probabilities to postures of the body as a function of the
inertial measurements only and/or a probability distri-
bution that assigns probabilities to postures of the body
as a function of the depth measurements only, the prob-
ability distribution function of the inertial measurements
only and/or the depth measurements only being obtained
based on the predetermined data;

[0025] the method comprises an initial stage, including
the steps of tracking true states of a body taking postures,
collecting depth measurements of the body with said at
least one depth sensor, and collecting inertial measure-
ments with said at least one inertial sensor attached to the
body; and then establishing the function that provides
said at least one posture of the body for any values of
depth measurements and inertial measurements;

[0026] the depth measurements and the inertial measure-
ments constitute time-series and determining a posture
is repeated at each time the method collects depth mea-
surements and/or inertial measurements, and establish-
ing the function comprises determining data based on
which determining a posture at each current time is
performed; and/or

[0027] the determined data comprise data based on
which the method determines a probability distribution
that assigns probabilities to postures of the body as a
function of the inertial measurements only and a prob-
ability distribution that assigns probabilities to postures
of the body as a function of the depth measurements
only.
[0028] According to another aspect, it is provided a com-
puter-implemented method (hereafter referred to as “initial
stage method”) constituting an initial stage of the above
method for performing body posture tracking. The initial
stage method comprises the step of tracking true states of a
body taking postures. The initial stage method also comprises
the step of collecting depth measurements of the body with at
least one depth sensor, and collecting inertial measurements
with at least one inertial sensor attached to the body. And then
the initial stage method comprises the step of establishing a
function that provides at least one posture of the body for any
values of depth measurements and inertial measurements.

[0029] Such initial stage method may comprise one or more
of the following:

[0030] establishing the function comprises determining
data based on which, if for the method for performing
body posture tracking, the depth measurements and the
inertial measurements constitute time-series and deter-
mining a posture is repeated at each time the method
collects depth measurements and/or inertial measure-
ments, determining a posture at each current time may
be performed; and/or

[0031] the determined data comprise data based on
which the method for performing body posture tracking
may determine a probability distribution that assigns
probabilities to postures of the body as a function of the
inertial measurements only and/or a probability distri-
bution that assigns probabilities to postures of the body
as a function of the depth measurements only.

[0032] Itis further proposed a computer program compris-
ing instructions for performing any or both of the above
methods.
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[0033] It is further proposed a computer readable storage
medium having recorded thereon the above computer pro-
gram.

[0034] Itis further proposed a system comprising a proces-

sor coupled with a memory having recorded thereon the com-
puter program.

[0035] The system may further comprise at least one depth
sensor and at least one at least one inertial sensor.

BRIEF DESCRIPTION OF THE DRAWINGS

[0036] Embodiments of the invention will now be
described, by way of non-limiting example, and in reference
to the accompanying drawings, where:

[0037] FIGS. 1-2 shows flowcharts of examples of the
methods;

[0038] FIG. 3 shows an example of a system; and

[0039] FIGS. 4-10 illustrate the methods.

DETAILED DESCRIPTION OF THE INVENTION

[0040] FIG. 1 shows a flowchart of an example of the com-
puter-implemented tracking method, for performing body
posture tracking. The method comprises collecting S10 depth
measurements of a body with at least one depth sensor. The
method also comprises collecting S20 inertial measurements
with at least one inertial sensor attached to the body. The
method also comprises determining S30 at least one posture
of'the body as a function of the depth measurements and the
inertial measurements. Such a method improves the tracking
of'a body posture.

[0041] Existing depth sensor based data fusion systems
principally try to circumvent the problem of the sensor accu-
racy, disregarding almost completely the problem of the sys-
tem’s blind spots, resulting in systems that are hardly robust
to occlusions in the 3D scene. This is mainly due to the type
of sensors that are used, since fusion is performed with field
sensors that are not able to completely capture a3D scene. On
the other hand inertial sensor based data fusion systems try to
improve on the performance of the existing sensors and not
infer a whole body posture. In this endeavor, the basic knowl-
edge provided by an RGB camera is sufficient. Inference on a
whole body model requires more information than what is
gathered by the sensors that are used in these applications.
[0042] On the contrary, the tracking method of FIG. 1 col-
lects (i.e. gathers/takes) both depth and inertial measurements
of the body, and uses both these specific types of measure-
ments to estimate the body posture at S30, since the function
contemplated at S30 is a function of both types of measure-
ments (i.e. functions that never depend on one of the depth
measurements or inertial measurements, e.g. for all possible
values of such measurements, are thus excluded by the
method). In other words, the present tracking method per-
forms data fusion between both depth and inertial data. By
performing data fusion, it is meant that the determining S30
combines both depth measurements and inertial measure-
ments to output an estimation of the true body posture on
which the measurements where collected. The use of data
fusion allows to limit sensor accuracy issues (e.g. by dimin-
ishing sensing noise and/or errors). The specific data fusion
used by the tracking method (i.e. fusing specifically depth and
inertial data) allows to do this in a particularly interesting
way, with the possibility to infer a whole body model while
avoiding blind spots, all this with limited hardware (e.g. the
number of sensors at use).
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[0043] Inanexample, less than five depth sensors (e.g. only
one or two) depth sensors are involved at S10, and/or less than
ten, preferably less than five (e.g. only two, three or four)
inertial sensors are involved at S20. In such an example, the
method involves relatively little hardware, while providing an
accurate result for most real postures taken by the body on
which the measurements are collected.

[0044] The tracking method is advantageous on two
grounds. First, the data fusion of depth measurements (e.g.
depth maps) and inertial measurements (i.e. inertial sensor
information) improves on the detection accuracy of the body
model position, because even if both sensors bear signals with
noise, the quantity of relevant information from both sensors
helps them to cooperate and output a more accurate assess-
ment of the ground truth. Second, using inertial sensors helps
to deal with the intractable problem of occlusions, a problem
that is encountered when part of the scene is not observed by
the depth sensor. Inertial sensors on the other hand are not
sensitive to occlusions but are cumbersome to place on the
user. The method allows using a very limited amount of
inertial sensors that will help recover information that is not
accessible to the depth sensor and infer an overall accurate
body model posture.

[0045] The method is for body posture tracking. A body is
any set of articulated limbs, which may be substantially rigid
for atleast part of them. The bodies that may be tracked by the
method may be human bodies or animal bodies. Other types
of'bodies, such as mechanical bodies, may be tracked as well.
A posture ofabody is any set of positions of’its limbs, allowed
by the articulations of the body. Tracking a body posture
amounts to inferring the true state of the body posture (i.e.
describe the body in terms of positions taken by the limbs),
e.g. real-time, as widely known in the art. Indeed, the body
may be in motion in a location, or scene. The location may be
covered by the at least one depth sensor (i.e. the location is the
collecting field of said depth sensor), thus allowing the col-
lecting S10. The method may notably recognize the occur-
rence of a specific predetermined body posture type (in other
words, different types of body postures may be predeter-
mined, and the method may determine that the body has taken
an instance of one of them).

[0046] The depth measurements and the inertial measure-
ments may constitute time-series. In other words, the collect-
ing S10 and the collecting S20 are each repeated over time,
such that the body may take different postures due its motion,
resulting in a series of postures. Such a series of postures may
be called “motion” or “gesture”. The repetitions of the col-
lecting S10 and the collecting S20 may be synchronous (i.e.
simultaneous), for at least a part of the repetitions, or asyn-
chronous, for at least a part of the repetitions. Examples are
discussed later. In such a case of depth and inertial measure-
ments constituting time-series, the determining S30 of a pos-
ture may be repeated at each time the method collects (S10,
S20) depth measurements and/or inertial measurements, so as
to determine the series of postures of the body. In other words,
each time new depth and/or inertial measurements are col-
lected, the method determines S30 a new corresponding pos-
ture of the body. This way, the method tracks body motion
with relatively high hardware efficiency, with relatively high
accuracy and avoiding possible occlusions relatively well.
Such method may notably recognize the occurrence of a
specific predetermined type body gesture. Gesture types may
be predetermined and the method may recognize that the
body has taken an instance of a type.
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[0047] A depth sensor involved at S10 may be any known
type of three-dimensional (3D) depth sensor. Such a depth
sensor is a sensor exterior to (i.e. detached from) the body (the
body is in free motion relative to the sensor) that provides
field measurements (many measures for each time step) of the
body and the surrounding scene (the “depth measurements™)
that allow the determination of 3D positions of the body. The
depth sensor may for example output a depth model of the
body, as explained later.

[0048] Examples of depth sensors include:
[0049] Microsoft’s Kinect (registered trademark).
[0050] Stereo-vision Cameras (such as registered trade-

mark PointGrey BumbleBee2);

[0051] Structured Light sensors (such as registered
trademark Primesense Carmine);

[0052] Time of flight sensors (such as registered trade-
mark Mesa Swissranger);

[0053] Multi camera rig (such as registered trademark
Organic Motion openstage2);

[0054] Light Field Camera (such as registered trademark
Lytro);

[0055] Laser telemeter;

[0056] Sonar;

[0057] Radar;

[0058] Lidar; and/or

[0059] Every monocular camera equipped with 3D

reconstruction and depth map computation from struc-

ture from motion techniques.
[0060] Similarly, an inertial sensor involved at S20 may be
any known type of inertial sensor, that provides physical
measurements (the “inertial measurements™) related to the
3D position of a location attached to the body, such location
depending on where on the body and how the inertial sensor
is attached/linked. An inertial sensor is thus a sensor that
senses physical data from which 3D positions can be deduced
(the deduced positions being fixed relative to the sensor, e.g.
the deduced positions being the positions of the sensor itself).
[0061] Examples of inertial sensors include any micro-
electromecanical system combining one or more of the fol-
lowing sensors:

[0062] Gyrometer;
[0063] Accelerometer;
[0064] Magnetometer;
[0065] Pressure Sensor; and/or
[0066] MHD Sensors.
[0067] Typically, inertial sensors do not output 3D position

measures per se but they output first (speed) and second
(acceleration) derivatives. The knowledge of the initial posi-
tion allows the integration to get back the new position.
[0068] Furthermore, physical measurements outputted by
inertial sensors also depend on the movements of other body
parts from the ones to which the inertial sensors are attached,
as known in the art.

[0069] Themethod determines at S30 a posture ofthe body.
In other words, the method provides an estimation of the true
state, i.e. the real limb positions, of the body taking a posture.
The method performs such determination at S30 as a function
of'the depth measurements (collected at S10) and the inertial
measurements (collected at S20). In other words, the method
applies a scheme (the “function”) that takes as inputs the
measurements and outputs a posture (an estimation of the real
posture of the body, possibly the occurrence of a predeter-
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mined type, as mentioned above). Such function may itself be
composed of sub-functions, as shown in the examples pro-
vided later.

[0070] The function may be predetermined, and the method
may comprise a step of providing the function before the
determining S30. Notably, the function may be predeter-
mined in the “initial stage method”, which is a method con-
stituting an initial stage of the tracking method. In other
words, the initial stage method is performed prior to the
tracking method, and constitutes a “calibration” that provides
the function used at S30. The initial stage method may also be
referred to as “Offline stage”, whereas the tracking method
may be referred to as “Online stage”, such appellations being
known in the field.

[0071] FIG. 2 shows a flowchart of an example of the com-
puter-implemented initial stage method, constituting an ini-
tial stage of the method for performing body posture tracking.
[0072] The initial stage method comprises tracking S150
true states of a body taking postures. In other words, a body
takes different postures (i.e. the body is in motion), e.g. in a
location or scene that may be the same or similar (in terms of
physical characteristics) to the location or scene of the track-
ing method. The initial stage method tracks such postures at
S150 with any known tracking method providing a result with
relatively high accuracy (higher than the tracking method of
FIG. 1), thereby providing true states of the body. The true
states are substantially the real postures taken by the body. For
example, the body may take predetermined postures that are
known in advance, the tracking S150 amounting to retrieve
such predetermined postures. In a practical example, the
tracking S150 is achieved with known methods for providing
high accuracy results (involving a high number of depth sen-
sors relative to the method of FIG. 1, for example strictly
more than five, and/or involving a high number of inertial
sensors relative to the method of FIG. 1, for example strictly
more than ten). The initial stage method is typically per-
formed once, possibly at the manufacturer side or at an initial
calibration phase of any system implementing the method,
while the tracking method based on the function established
by said initial stage method may be performed any number of
times (as long as the material still functions). For this reason,
the costs involved by the high accuracy required by the track-
ing S150 are not an issue.

[0073] In parallel to the tracking S150, the initial stage
method comprises collecting S100 depth measurements of
the body with at least one depth sensor, and collecting S200
inertial measurements with at least one inertial sensor
attached to the body. Any depth sensor involved at S100
and/or inertial sensor involved at S200 may be the same or
similar (i.e. of the same type, e.g. the same model) as the
sensors involved in the tracking method at S10 and S20. Also,
the collecting S100 and/or S200 are performed in the same
way or similarly to the collecting S10 and/or S20. The idea is
that the initial stage method compares what these sensors
output to the true states (that are known thanks to S150), in
order to establish the function that relates both data. Thus, the
(experimental) conditions of the initial stage method may be
the same or similar to the (real) conditions of the tracking
method. These machine learning concepts are known from
the field of data fusion and are thus not further discussed.
[0074] The initial stage method then comprises establish-
ing S300 a function that provides at least one posture of the
body for any values of depth measurements and inertial mea-
surements. Such a function may then be used in the tracking
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method, and for any values collected at S10 and/or S20, the
tracking method will be able to perform the determining S30.
Examples of the establishing S300 are provided later.
[0075] Inthe case where, in the tracking method, the depth
measurements and the inertial measurements constitute time-
series and determining S30 a posture is repeated at each time
the method collects (S10, S20) depth measurements and/or
inertial measurements, establishing S300 the function corre-
spondingly comprises determining data based on which
determining a posture at each current time may be performed.
The initial stage is indeed associated to the tracking method,
such that any example of the tracking method is feasible.

[0076] In the specific case that time-series are considered,
the initial stage may consider this specificity and the function
may actually depend on the current time. This way, time
information is used and the tracking is improved. Indeed, the
determining S30 at each current time (noted e.g. t+1) may be
performed based on predetermined data (e.g. established at
S300 of the initial stage), on the depth measurements and/or
inertial measurements collected at the current time (depth
measurements are collected at repetition of S10 at t+1 and/or
inertial measurements are collected at repetition of S10 at
t+1), and on data determined at the previous time (t) (e.g. data
determined from depth and/or inertial measurements not later
than the previous time t, and/or data determined from a rep-
etition of determining S30 not later than the previous time t).
This allows real-time body tracking, in an improved way.
Examples are provided later.

[0077] The methods are computer-implemented. This
means that the methods are executed on at least one computer,
or any system alike. Thus, steps of the methods are performed
by the computer, possibly fully automatically, or, semi-auto-
matically (e.g. steps may be triggered by the user). A typical
example of computer-implementation of the method is to
perform any or both of the methods with a system suitable for
this purpose. The system may comprise a memory having
recorded thereon instructions for performing any or both of
the methods. In other words, software is already ready on the
memory for immediate use. The system is thus suitable for
performing any or both of the methods without installing any
other software. Such a system may also comprise at least one
processor coupled with the memory for executing the instruc-
tions. In other words, the system comprises instructions
coded on a memory coupled to the processor, the instructions
providing means for performing any or both of the methods.
Such a system is an efficient tool for tracking body postures.
[0078] To cause the system to perform any or both of the
methods, it is provided a computer program comprising
instructions for execution by a computer, the instructions
comprising means for this purpose. The program may be
recorded on a data storage medium. The program may for
example be implemented in digital electronic circuitry, or in
computer hardware, firmware, software, or in combinations
of'them. Apparatus of the invention may be implemented in a
computer program product tangibly embodied in a machine-
readable storage device for execution by a programmable
processor; and method steps of the invention may be per-
formed by a programmable processor executing a program of
instructions to perform functions of the invention by operat-
ing on input data and generating output. The instructions may
advantageously be implemented in one or more computer
programs that are executable on a programmable system
including at least one programmable processor coupled to
receive data and instructions from, and to transmit data and
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instructions to, a data storage system, at least one input
device, and at least one output device. The application pro-
gram may be implemented in a high-level procedural or
object-oriented programming language, or in assembly or
machine language if desired; and in any case, the language
may be a compiled or interpreted language. The program may
be a full installation program, or an update program. In the
latter case, the program updates an existing system to a state
wherein the system is suitable for performing the method.
[0079] FIG. 3 shows an example of a system adapted for
performing any or both of'the initial stage and tracking meth-
ods.

[0080] The system of the example comprises a central pro-
cessing unit (CPU) 1010 connected to an internal communi-
cation BUS 1000, a random access memory (RAM) 1070 also
connected to the BUS. The system is further provided with a
graphics processing unit (GPU) 1110 which is associated
with a video random access memory 1100 connected to the
BUS. Video RAM 1100 is also known in the art as frame
buffer. A mass storage device controller 1020 manages
accesses to a mass memory device, such as hard drive 1030.
Mass memory devices suitable for tangibly embodying com-
puter program instructions and data include all forms of non-
volatile memory, including by way of example semiconduc-
tor memory devices, such as EPROM, EEPROM, and flash
memory devices; magnetic disks such as internal hard disks
and removable disks, magneto-optical disks, and CD-ROM
disks 1040. Any of the foregoing may be supplemented by, or
incorporated in, specially designed ASICs (application-spe-
cific integrated circuits). A network adapter 1050 manages
accesses to a network 1060. The system may also include a
haptic device 1090 such as a cursor control device, akeyboard
or the like. A cursor control device is used in the system to
permit the user to selectively position a cursor at any desired
location on screen 1080, as mentioned with reference to FIG.
2. By screen, it is meant any support on which displaying may
be performed, such as a computer monitor. In addition, the
cursor control device allows the user to select various com-
mands, and input control signals. The cursor control device
includes a number of signal generation devices for input
control signals to system. Typically, a cursor control device
may be a mouse, the button of the mouse being used to
generate the signals.

[0081] The system further comprises ports 1200 that may
allow the connection of at least one depth sensor and/or at
least one inertial sensor, involved in the tracking method
and/or the initial stage method. Alternatively or additionally,
the system may comprise a wireless station for wireless com-
munication with said sensors. The system may in any case
comprise any known required hardware for performing col-
lecting steps (S10, S20, S100, S200) or the tracking 5150 of
any or both the methods.

[0082] The tracking method may be used in a variety of
applications ranging from video gaming to surgical assis-
tance. In most of these applications, “gesture/motion recog-
nition” and “tracking” are useful. The tracking method may
thus enhance such technology fields by improving body pos-
ture or motion tracking.

[0083] Examples of the tracking method and of the initial
stage method are now discussed.

[0084] Themethodsmay collectthe depth measurements at
S10 and/or S100 and organize them as a depth map (i.e. a 3D
map of depth measurements). Then, before the determining
S30 or the establishing S300, the methods may process the
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depth map in such a way that the body limbs are detected and
fitted to a comprehensive model. Body motion/posture track-
ing is in the prior art typically performed through time, and
through detection and/or prediction, the tracking method may
update the position of a limb to its actual spatial position.
Tracking is advantageous for a smooth experience since it
enforces a correct match between body limbs and also
ensures that each body part remains detected in each and
every frame.

[0085] A body model may be used by the methods of the
examples to translate the recognized posture or gestures in an
integrated fashion. Specifically, the methods may translate
the depth measurements to compute parameters of a body
model. Examples of body models include wireframe skel-
etons, such as skeleton 40 of FIG. 4, or cylindrical body
shapes such as cylindrical body shape 50 of FIG. 5. These
models are parameterized (e.g. each wire position in the wire-
frame skeleton or the cylinders’ lengths and widths in the
cylindrical model). Some of the parameters may be given by
the user, but most or all of them may be directly brought by the
tracking method. The completed body model can then be used
to animate an avatar or any representation of the body for
representation on a display device, such as avatar 104 on
display device 102 exemplified on FIG. 8. The exact manage-
ment of body models is however out of the scope of the
present discussion, as this is known from the prior art.
[0086] There exist many solutions that aim at extracting a
body model from a depth map and that may be implemented
by the methods, following S10 and/or S100. Reviewing them
would be out of the scope of this discussion. A known
example is to use visual cues and depth information to gen-
erate a hypothetical body model. This model is then con-
fronted to a set of constraints as well as its previous state to
infer the actual body model position.

[0087] However sophisticated the body model tracking is,
tracking artifacts always subsist. These artifacts are due to the
inherent inaccuracy of the depth motion sensors as well as a
purely physical concern: since the depth sensor analyzes the
scene from a vantage point, all blind spots from this vantage
point are also blind spots in the depth sensor perception,
resulting in incomplete scene detection. The situations where
there are blind spots in the scene are also called occlusions.
[0088] In FIGS. 6-7, two such situations are depicted in
which only self-occlusions are shown. On the right of each
figure can be seen a schematic representation of the actual
user position 62, and on the left is the resulting body model 64
(a skeleton view is used as a practical example). In the first
case (FIG. 6) the user is only crossing his legs, and this
situation is problematic to most body model solvers and usu-
ally dealt with using additional constraints or model priors,
which may be cumbersome. However, there is no amount of
additional constraint or model prior that can help solve the
problem encountered in FIG. 7. FIG. 7 shows the case where
the user only shows his side to the depth sensor, in this case,
half his body is occluded, this type of occlusion is simply
intractable to a depth sensing unit alone. In this case, the body
model ends up in a garbled state in which the solver mis-
matches the occluded body parts with parts present in the
scene.

[0089] The tracking method of the examples brings a solu-
tion to this technical problem as it allows the creation of a
body model that is free of occlusions.

[0090] Recently, inertial sensors have gained a lot of atten-
tion, notably through their use in video game consoles. Unfor-
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tunately, recovering a whole body model from inertial sensors
requires a large amount of them (between 10 and 20 inertial
sensors placed in different locations on the body). This large
amount is prohibitive for most applications since recovering
the body model would require the user to be outfitted with
these sensors every time.

[0091] As a viable alternative, the tracking method pro-
poses to make use of both worlds. Indeed using a limited
amount of body attached inertial sensors cannot provide the
system with a full body posture but instead only a set of
probable body postures at best. However the complementary
usage of a depth sensor brings back the constraints lost by
removing most body attached inertial sensors. Wearing few,
for example two or three, sensors is minimally intrusive for
the user, but at the same time reduces mismatches due to
occlusions in the depth map, in a surprising extent.

[0092] As depicted in FIG. 8, the system of the examples
may consist in a depth sensor 82 and a small amount of
wearable inertial sensors (two: 84 and 86) attached to the
user’s body 88. The purpose of the methods is to accurately
track the person’s body movement through time and apply it
to a computer generated body model, that is then shown on a
display device 102 in the example.

[0093] Several technical terms used in the following are
now defined and discussed.

[0094] A state or body state is a description of the motion or
the absence of motion of the body. A true state is a description
that matches with high accuracy the real position of the body.
A true body state is a time evolving body model that measures
with the highest possible precision the real position such that
the true state and the real position can be virtually identical.
For example, the highest distance error between a 3D position
provided for any point of any limb of the body and the real
position of said point is lower than a predetermined threshold,
e.g. equal to a percentage of the height of the body, e.g. 1%,
0.1% or 0.01%.

[0095] A body model is a parametric representation of the
body. As discussed earlier, several types of body models can
be considered: a wireframe skeleton or a cylindrical model
are just two examples. Mathematically a body model can be
fully represented by a vector of the model parameters (e.g.
nodes positions and limbs length in the wireframe skeleton
case).

[0096] The depth model is the set of depth measurements
(represented mathematically as a vector of measurements for
each and every body part) acquired at S10 or S100 with the
depth sensor(s) that incompletely represents the body state.
The following examples use the depth model to infer the true
body state. The depth model in itself can be used to create a
body model but could also be a body model (in which case the
depth model is represented mathematically by a vector of
parameter measurements for each and every part of the body
model). The term of depth model is used here for more gen-
erality. The examples use a body model extracted from the
depth measurements as a depth model.

[0097] The inertial model is the set of inertial measure-
ments (represented mathematically as a vector of measure-
ments for each and every sensor location) acquired at S20 or
S200 with the inertial sensor(s) that incompletely represents
the body state. The following examples use the inertial model
to infer the true body state. The inertial model in itself can be
used to create a body model but could also be abody model (in
which case the inertial model is represented mathematically
by a vector of body model parameter measurements collected
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on sensors placed at fixed and predefined places on the body).
The term of inertial model is used here for more generality.
The examples use the inertial sensor measurements as an
inertial model.
[0098] The tracking method is based on the observations
that both the depth sensor and the motion sensors only give an
incomplete assessment of the body parts position, but this
incomplete information can be fused to restitute an accurate
representation of the body motion.
[0099] As explained earlier, the methods for in fine per-
forming the tracking may be separated in two stages.
[0100] The first stage, denoted as initial or offline stage,
corresponds to the stage where all the parameters of the
algorithm are evaluated, and this is done once and for all. The
term offline refers to the fact that this stage is transparent to
the user of the tracking method and even if it has large com-
putational needs, time to do computations can be taken. This
stage in the following examples relies heavily on machine
learning algorithms and especially on regression machine
learning algorithms.
[0101] The second stage, denoted as online stage or track-
ing method, gathers all the steps of the method that are done
in real-time during the body model tracking. This stage in the
following examples decomposes in three technologies:
[0102] Extraction through time of the depth model and
inference of the probability of the true body state.
[0103] Extraction through time of the inertial model and
inference of the probability of the true body state.
[0104] Possibly asynchronous sensor fusion of both true
body state probabilities in order to augment both the
accuracy of the body model and the completeness of the
model.

[0105] FIG. 10 illustrates the technological workflow and is
described later.
[0106] An example of the offline initial stage is now dis-

cussed with reference to FIG. 9, which presents an example of
a flowchart representing actions included in the establishing
S300. This example of the initial stage corresponds to an
online tracking method performing body motion tracking as
explained earlier, i.e. wherein the depth measurements and
the inertial measurements constitute time-series, and deter-
mining a posture is repeated at each time.

[0107] Furthermore, the tracking method corresponding to
this example further presents the specificity that determining
a posture at S30 at each current time is performed based on
predetermined data, on the depth measurements and/or iner-
tial measurements collected at the current time, and on data
determined at the previous time, namely by determining and
maximizing a probability distribution that assigns probabili-
ties to postures of the body as a function of the depth mea-
surements and the inertial measurements. In other words, the
method determines a probability distribution that assigns (i.e.
provides) a probability that the body took a specific posture
(for all postures) when collecting at S10 and S20 the depth
and inertial measurements, given the values of said measure-
ments. Then the method may simply maximize (i.e. deter-
mine the maximum or the maximum’s argument) such prob-
ability distribution, for example by outputting the argument
of the maximum of the probability distribution. Said argu-
ment is considered to be the most probable posture in the
example.

[0108] In such a case, the predetermined data, based on
which determining the posture is performed at S30 and that
the initial stage determines at S300, may comprise data based
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on which the method for performing body posture tracking
may determine a probability distribution that assigns prob-
abilities to postures of the body as a function of the inertial
measurements only and/or a probability distribution that
assigns probabilities to postures of the body as a function of
the depth measurements only. In other words, two probability
distributions are contemplated: both assign probabilities to
postures based on only one of the two types of data collected
(depth or inertial). This keeps computational costs low, as
illustrated in the following.

[0109] In order to infer the true body state given a set of
incomplete and/or inaccurate measurements, the tracking
method of the example first computes the probability distri-
bution of the true body state being in state A given that the
depth or inertial model is in state A'. Computing the probabil-
ity distribution of the true body state given either the depth or
inertial model is done with a classical Machine Learning
algorithm for regression (step S930 on FIG. 6), that may
implement any or a combination of:

[0110] Mixture of Experts for Regression (e.g. as
described in “Adaptive mixtures of local experts”,
Jacobs et al.);

[0111] Boosted Regression (e.g. as described in “Greedy
Function Approximation: A Gradient Boosting
Machine”, Friedman et al.);

[0112] Kernel Ridge Regression (e.g. as described in
“Learning with Kernels”, Smola et al.);

[0113] Markov Chain Monte Carlo (e.g. as described in
“Bayesian Data Analysis”, Gelman et al.); or

[0114] Approximate Bayesian Computation (e.g. as
described in “Bayesian Data Analysis™, Gelman et al.).

[0115] Machine Learning algorithms use a training dataset
that is constructed as explained in the following.

[0116] Letus considery as a true body state observation of
the body. y is characterized as a vector of input (provided at
step S920 on FIG. 9, and collected at S150) in space Y.
Concurrently let us consider m as either the inertial or depth
model vector (provided at step S920 on FIG. 9 and collected
atS100 or S200), in space M. Eachm and y are acquired at the
same time so that they are perfectly matching. The training
data set consists in a collection of N pairs m and y: D={(m,
y),,meM,yeY.ie[1,N]} (provided at step S900 on FIG. 9),
using this data set we are interested in the construction of the
conditional probability P (Y=yIM=m). In all practicality N
may be fairly large to be able to cover most adequately all
dimensions of the problem. N may for example be as large as
k times the number of dimensions inY times (i.e. multiplying)
the number of dimensions in m, with k superior to 100 or to
500, and/or inferior to 2000 or to 1500, preferably equal to
1000.

[0117] The creation of the training data set D is straightfor-
ward. The true body state observations y can be acquired at
S150 using any known motion capture paradigm as explained
earlier. An example includes the algorithm described in the
paper entitled “A survey of computer vision-based human
motion capture”, by Moeslund et al. The body can also be
fitted with many inertial sensors, much more than what is
required for the tracking method, to be able to capture the
movement of each body part. This may be done as described
in the paper entitled “A Real-Time Articulated Human
Motion Tracking Using Tri-Axis Inertial/Magnetic Sensors
Package”, by Zhu et al.

[0118] The corresponding m model vectors are acquired at
the same time and are the same as the ones that would be
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acquired during the online phase (after learning, during
usage), and correspond to the depth model in one case and to
the inertial model in the other.

[0119] Then, given a new model vector m,,, we get the
distribution of possible true body states as

P(y | M)

VyeY

[0120] Known regression algorithms (step S930 on FIG. 9)
are often parametric and model the conditional probability
profile P (Y=yIM=m) using a mixture of nonlinear functions.
The learning stage of the algorithm may consist in finding the
parameters of the model.

[0121] Letusconsider linear regression as an example of an
algorithm that can be applied at S930, such as the algorithm
described in the reference entitled “Bayesian Inference in
Statistical Analysis”, Box., or “Murphy, Kevin P. Machine
learning: a probabilistic perspective. The MIT Press, 2012”.
[0122] Each ground truth observation y is modeled as a
linear expression of the measurement m as:

[0123] y,=Am,+e where A is a matrix of size the dimension
of M times the dimension of Y, and e is an independent and
identical normally distributed random noise: €;N(0,2) where
2 is the noise covariance matrix. Using this last equation, the
conditional probability of y given m can be written:

-1
P(y|m)=N(y|Am, o) = 5 = AmTZ (- Am)]

1
det(Z)V2r eXp(

[0124] A and E can be computed analytically maximizing
the fit on D, we get:

A=m'm)'mTy
Z=cov(y-Am)

[0125] where y and m are the matrices collecting all the
training samples.

[0126] We see here that with the knowledge of D the
method can completely define the probability P (Y=yIM=m).
[0127] For a full profile of the conditional probability, the
initial stage may preferably use (instead of linear regression)
non-parametric methods such as MCMC (Markov Chain
Monte Carlo) or ABC (Approximate Bayesian Computation).
[0128] Anexample of the online tracking stage correspond-
ing to the initial stage of FIG. 9 is now discussed with refer-
ence to FI1G. 10.

[0129] As explained earlier, in this example the depth mea-
surements and the inertial measurements constitute time-se-
ries, and determining a posture is repeated at each time the
method collects depth measurements and/or inertial measure-
ments. Moreover, determining a posture at each current time
is performed based on predetermined data (during the initial
stage), on the depth measurements and/or inertial measure-
ments collected at the current time, and on data determined at
the previous time. Furthermore, determining the posture
comprises determining and maximizing a probability distri-
bution that assigns probabilities to postures of the body as a
function of the depth measurements and the inertial measure-
ments.
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[0130] Inthisexample, at each current time (noted t+1), the
probability distribution P(y,,,1X,.,, Z,,) that assigns prob-
abilities to postures y of the body as a function of the depth
measurements and the inertial measurements is recurrently
obtained (i.e. a recurrence is predefined to determine the
probability distribution as the determining S30 is repeated)
by multiplying the probability distribution P(y,X,, Z,) that
assigns probabilities to postures y of the body as a function of
the depth measurements and the inertial measurements deter-
mined at the previous time (noted t), by the probability dis-
tribution P,,,,;. (V41 1X,,1) (€.g. determined during the initial
stage) that assigns probabilities to postures y of the body as a
function of the inertial measurements only; and/or by the
probability distribution P 1, ,,,(y,,117,,.,) (e.g. determined dur-
ing the initial stage) that assigns probabilities to postures y of
the body as a function of the depth measurements only. As
explained earlier, the probability distribution function of the
inertial measurements only and/or the depth measurements
only may be obtained based on the predetermined data (e.g.
determined during the initial stage). This is detailed below.
[0131] The method may comprise after collecting S10
depth measurements the extraction of a body model from a
depth map, as discussed earlier. This corresponds to step 1.6
on FIG. 10.

[0132] Technologies allowing the extraction of a body
model from a depth map are out of the scope of the present
discussion. Current technologies track specific landmarks
places on the body joints and recreate a wireframe skeleton of
the body or track body parts position and orientations to
recreate a cylinder based body model. An adequate method
for body model extraction can be found in the paper entitled
“Real-Time Human Pose Recognition in Parts from Single
Depth Images”, by Shotton et al.

[0133] We denote the depth model vector as z (provided at
step 1.8 of FIG. 10), in the space of depth model vector
observations Z and y as a true body state observation of the
body. y is characterized as a vector of input (provided at step
1.9 of FIG. 10) in space Y. The conditional probability profile
P, (y1Z=2) is estimated using the procedure described in
the discussion regarding the offline initial stage (step 1.10 of
FIG. 10). The obtained distribution is used in conjunction
with the inertial sensor conditional probability distribution to
extract the most probable body state.

[0134] Given a new and never before seen depth model
vector z, the most probable body model state that could be
inferred by the depth sensor is obtained by maximization of
the probability:

y = argmaxPye (Y =y | Z = z).
¥

This is step 1.7. We are however interested in the whole
probability profile expressed as a function of y: f.,,()
:Pdepth(Y:ylzzz)'

[0135] The method may comprise after collecting S20 iner-
tial measurements the extraction of a body model from a few
inertial sensors placed onto the body, as discussed earlier.
This corresponds to step 1.4 on FIG. 10.

[0136] The inertial sensors output a signal time series that
bears some information about the state of the body part it is
mounted on but also subtle variations associated with the
movement of other body parts. The inertial sensor’s signal
may be highly corrupted by noise, a preprocessing step
involving signal filtering and signal processing being thereby
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advantageous. Describing these known technologies is out-
side the scope of this discussion. Examples of such technolo-
gies that work can be for instance found in the paper entitled
“A Real-Time Articulated Human Motion Tracking Using
Tri-Axis Inertial/Magnetic Sensors Package”, by Zhu et al.)
and the references therein.

[0137] As before, let us consider y as a true body state
observation of the body. y is characterized as a vector of input
(step 1.3) in space Y. Concurrently let us consider x as the
inertial model vector (step 1.1), in space X. The conditional
probability profile P, ,.,,...(y|X=x) is estimated using the pro-
cedure (step 1.2) described in the Machine Learning Tech-
nology section.

[0138] Given a new and never before seen inertial model
vector X, the most probable body model state that could be
inferred with the inertial sensor is obtained by maximization
of the probability:

y = argmaxPiepiq(Y = y| X = x).
y

We are however interested in the whole probability profile
expressed as a function of y: f,,,_.....Y)=P.crmal Y=y 1 X=X).
[0139] Now, the method may implement synchronous or
asynchronous data fusion at S30 (such general types of data
fusion being discussed in the paper entitled “Multi Sensor
Data Fusion”, by Durrant-Whyte) of the depth model and the
inertial model.

[0140] Let us consider a time governed process. For each
time step t we want to know the value y that maximizes the
probability P(y,,;1X,,, Z,,,) where X, is {X,, 1, X, X,_, - - .
s Xoband Z,; 2,1, 2, 2,1, - . ., Zy} 1s the set of depth and
inertial models acquired so far. This maximizing value y* is
evaluated at time t+1 and corresponds to the (t+1)” value ofy.
In order to get the function ofy, P(y,,,1X,, 1, Z,. ), the method
uses data fusion techniques that will correlate this quantity
with Pdepth(yt+l |Z:Zt+1) and Pinert‘[al(yt+l |Xq{t+l)'

[0141] Using Bayes rule (such as described in the paper
entitled “Bayesian Data Analysis”, by Gelman et al.), we can
rewrite P(y1X,,, Z,,,) as:

Pyt | Xevts Ziet) = Puet | Xeets Tty Xy Z2)

_ Pt Zevt | Yests Xeo Z)PYeer | Xe, Z2)
P(yests 21 | Xos Z2)

[0142] using the independence of the measurement of dif-
ferent sensors given the y, we can rewrite this as
P()"XHI:ZHI)O(P(xnlxznl‘yt+1:thZt)P(yu(nZt)O(P(xn
1 ‘yt+ll)(t)P(Zt+l ‘yH»lJZt)P(yH»l \X,,Zt)
[0143] where « is the proportionality symbol removing the
terms independent of y.

[0144] Assuming that measurement noise is uncorrelated
with time, we have)

P21 [Ver1, 2P 2001 1er1)

[0145] using Bayes rule again:

P(yeer | Ze1)

P
(Zee1 | Yee1) o POy
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[0146] P(y)canbeinferred through aprobabilistic or physi-
cal model of the true body state, considering the high dimen-
sionality of the state space we used a uniform density for P(y).
[0147] This final model leads to:

Pt X 120 DL gVt 2 0 ) Prnersiat Vet X VP
et X Z)=F, depth(yﬂl)f inerdal¥er VP Ver 11 X6 Z,)

[0148] Marginalization of the joint probability yields:
Pt X Z)Ady P19, X0 Z)P 31X, Z,).
[0149] However the true state is not dependent on the obser-

vations so we have
Py 1 yoXoZ)=P(yr v,

[0150] This last quantity (the state transition probability)
can be obtained through the use of a physical model of the true
body state or through extensive learning in the parameter
space. An example of a physical body model may be found in
the paper entitled “Spacetime Constraints”, by Witkin et al.
[0151] Themethoduses a Dirac (centered iny,) distribution
for the state transition probability, leaving out the state pre-
diction to the sensors only. It can be noted however that using
the Dirac distribution is part of the general model where we
could have used a physical model of the true body state,
namely the case of the resting body model.

[0152] We get the recurrence used by the method as men-
tioned above:

P(yoXo Zo)=Pyolxoz0)=Po

Pt X 120 )P iV et 2 04D Piersiat Ves 1 X DP

WX, Z,).
[0153] P, may be initialized either with a normal law with
identity variance and zero mean or a prior body model P(y)
computed beforehand on the ground truth data with Monte
Carlo Sampling.
[0154] Evenifnormalization of P(y,IX,Z,)is not required, it
may be conducted at regular intervals by the method to pre-
vent the quantity to reach virtually zero in machine precision.
[0155] As illustrated by step 1.11, in the case of asynchro-
nous data streams, techniques such as track-to-track filtering
may be used to process the data stream as the data comes.
Track-to-track filtering updates the probabilities of the body
model motion as each of the probabilities P, (y|Z=z) and
P er0(y1X=X) are given, which in turn relates to the sensors
frequency.
[0156] The recursion then becomes:

P(yolXoZo)=Py

Py X 120 ) Piersiat Vet X )P X, Z)

or

P(yt+l‘XH»IJZH»I)O(Pdepth(yH»l‘ZH»I)P(yt‘Xl’Zt)'

[0157] Once the probability of the body model motion
given each sensor output is obtained, the most probable body
model motion is obtained through maximization of the prob-
ability:

Vier = argmaxP(yer | Xeets Zer).
e+l

[0158] While this invention has been particularly shown
and described with references to example embodiments
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thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the scope of the invention encom-
passed by the appended claims.

1. A computer-implemented method for performing body
posture tracking, comprising the steps of:

collecting (S10) depth measurements (Z,, , ) of a body with

at least one depth sensor;
collecting (S20) inertial measurements (X,, ;) with at least
one inertial sensor attached to the body; and

determining (S30) at least one posture (y*) of the body as
a function of the depth measurements and the inertial
measurements.

2. The method of claim 1, wherein the depth measurements
and the inertial measurements constitute time-series, and
determining a posture is repeated at each time the method
collects depth measurements and/or inertial measurements,
the method thereby tracking body motion.

3. The method of claim 2, wherein determining a posture at
each current time (t+1) is performed based on predetermined
data, on the depth measurements (z,, ;) and/or inertial mea-
surements (X,,,) collected at the current time, and on data
determined at the previous time.

4. The method of claim 3, wherein determining the posture
comprises determining and maximizing a probability distri-
bution (P(y,,,1X,,,, Z,,,)) that assigns probabilities to pos-
tures (y) of the body as a function of the depth measurements
and the inertial measurements.

5. The method of claim 4 wherein, at each current time
(t+1), the probability distribution (P(y,,;|X,,;, Z,.,)) that
assigns probabilities to postures (y) of the body as a function
of the depth measurements and the inertial measurements is
recurrently obtained by multiplying the probability distribu-
tion (P(y,IX,, Z,)) that assigns probabilities to postures (y) of
the body as a function of the depth measurements and the
inertial measurements determined at the previous time (t), by
a probability distribution (P,,.,,.:/(V..11X,.1)) that assigns
probabilities to postures (y) of the body as a function of the
inertial measurements only and/or a probability distribution
(P sepn(Y1112,,1)) that assigns probabilities to postures (y) of
the body as a function of the depth measurements only, the
probability distribution function of the inertial measurements
only and/or the depth measurements only being obtained
based on the predetermined data.

6. The method of claim 1, wherein the method comprises
an initial stage, including the steps of:

tracking (S150) true states (y) of a body taking postures;

collecting (S100) depth measurements (z) of the body with

said at least one depth sensor, and collecting (S200)
inertial measurements (x) with said at least one inertial
sensor attached to the body; and then establishing
(S300) the function that provides said at least one pos-
ture (y*) of the body for any values of depth measure-
ments (z) and inertial measurements (x).

7. The method of claim 6, wherein the depth measurements
and the inertial measurements constitute time-series and
determining a posture is repeated at each time the method
collects depth measurements and/or inertial measurements,
and establishing the function comprises determining data
based on which determining a posture at each current time
(t+1) is performed.

8. The method of claim 7, wherein the determined data
comprise data based on which the method determines a prob-
ability distribution (P,,,.,;,/(¥..11X,.1)) that assigns probabili-
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ties to postures (y) of the body as a function of the inertial
measurements only and a probability distribution (P (v,
11z,,,)) that assigns probabilities to postures (y) of the body as
a function of the depth measurements only.

9. A computer-implemented method constituting an initial
stage of a method for performing body posture tracking,
comprising the steps of:

tracking true states (y) of a body taking postures;

collecting depth measurements (z) of the body with at least

one depth sensor, and collecting inertial measurements
(x) with at least one inertial sensor attached to the body;
and then

establishing a function that provides at least one posture

(v*) of the body for any values of depth measurements
(z) and inertial measurements (x).

10. The method of claim 9, wherein establishing the func-
tion comprises determining data based on which, if for the
method for performing body posture tracking, the depth mea-
surements and the inertial measurements constitute time-se-
ries and determining a posture is repeated at each time the
method collects depth measurements and/or inertial measure-
ments, determining a posture at each current time (t+1) may
be performed.

11. The method of claim 10, wherein the determined data
comprise data based on which the method for performing
body posture tracking may determine a probability distribu-
tion (P,,.,;.(V..11X,,1)) that assigns probabilities to postures
(y) of'the body as a function of the inertial measurements only
and/or a probability distribution (P,,,(y.117,.,)) that
assigns probabilities to postures (y) of the body as a function
of the depth measurements only.

12. A computer program product comprising:

a data storage medium embodying code instructions for

performing body posture tracking; and

the code instructions including instructions configuring a

computer to:

collect (S10) depth measurements (Z,, ;) of a body with at

least one depth sensor;

collect (S20) inertial measurements (X,, | ) with at least one

inertial sensor attached to the body; and

determine (S30) at least one posture (y*) of the body as a

function of the depth measurements and the inertial
measurements.

13. A system comprising:

a processor; and

a memory operatively coupled to the processor and having

recorded thereon program code, wherein the processor
executing the program code:

collects (S10) depth measurements (Z,, ;) of a body with at

least one depth sensor;
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collects (S20) inertial measurements (X,,,) with at least
one inertial sensor attached to the body; and

determines (S30) at least one posture (y*) of the body as a
function of the depth measurements and the inertial
measurements.

14. The system of claim 13, further comprising at least one
depth sensor and at least one inertial sensor.

15. The system of claim 13, wherein the depth measure-
ments and the inertial measurements constitute time-series,
and the processor determines a posture by repeating at each
time that the processor collects depth measurements and/or
inertial measurements, the system thereby tracking body
motion.

16. The system of claim 15, wherein the processor deter-
mines a posture at each current time (t+1) based on predeter-
mined data, on the depth measurements (z,, ;) and/or inertial
measurements (X,, ;) collected at the current time, and on data
determined at the previous time.

17. The system of claim 16, wherein the processor deter-
mines the posture by: determining and maximizing a prob-
ability distribution (P(y,, ,1X,,,, Z,,,)) that assigns probabili-
ties to postures (y) of the body as a function of the depth
measurements and the inertial measurements.

18. The system of claim 13, wherein the processor execut-
ing the program code further performs an initial stage to:

track (S150) true states (y) of a body taking postures;

collect (8100) depth measurements (z) of the body with
said at least one depth sensor, and collect (S200) inertial
measurements (x) with said at least one inertial sensor
attached to the body; and then

establish (S300) the function that provides said at least one

posture (y*) of the body for any values of depth mea-
surements (z) and inertial measurements ().

19. The system of claim 18, wherein the depth measure-
ments and the inertial measurements constitute time-series
and determining a posture is repeated at each time the method
collects depth measurements and/or inertial measurements,
and establishing the function comprises determining data
based on which determining a posture at each current time
(t+1) is performed.

20. The system of claim 19, wherein the determined data
comprise data based on which the method determines a prob-
ability distribution (P,,,.,,;.A¥ 11X, )) that assigns probabili-
ties to postures (y) of the body as a function of the inertial
measurements only and a probability distribution (P, (y,.
11z,,,)) that assigns probabilities to postures (y) of the body as
a function of the depth measurements only.

#* #* #* #* #*



